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Abstract

In this paper, we first give a simple proof of the decomposition theorem in Alber (Field Inst.
Comm. 25 (2000) 77) and then present a new decomposition of arbitrary elements in reflexive
strictly convex and smooth Banach spaces. As applications of the decomposition theorem, we
give the representations of the metric projection operator for some kind of closed convex sets.
Finally, we provide a sufficient condition under which the generalized projection operator
coincides with the metric projection operator.
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1. Introduction

It is well known that Moreau’s decomposition theorem (see [12])

X = Pgx+ Pgox, <{Pgx,Pgoxy =0,
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where K is a closed convex cone in a Hilbert space and K is the polar cone of K, is
an important principle in Hilbert spaces. However, the transition from Hilbert space
to Banach space is not so simple. In 1998, Alber [2] obtained a semi-definite
decomposition of arbitrary elements of reflexive strictly convex and smooth Banach
spaces by using the generalized projection, i.e.,

x=J "Mpdx+w, {Hgdx,w) =0,

where K is a closed convex cone, J : X —» X* is the duality mapping, we K, and 1o
denotes the generalized projection operator. Later on, Alber [3] refined this result
and obtained a definite decomposition by using the metric and the generalized
projections, i.e.,

x = Pgx+J "Hgdx, {IgoJx,Pgx) =0.

In this paper, we first give a simple proof of the decomposition theorem in [3] and
then present a new decomposition of arbitrary elements in a reflexive strictly convex
and smooth Banach space. As applications of the decomposition theorem, we give
the representations of the metric projection operator for some kind of closed convex
sets. Finally, we provide a sufficient condition under which the generalized
projection operator coincides with the metric projection operator.

2. Preliminaries

Let X be a real Banach space with the dual space X*. Denoting by || - || and || - ||,
the norms on X and X, respectively. As usual, we denote the duality pairing of X*
and X by {x*,x>, or {x,x*), where x*e X* and xe X.

The duality mapping J : X — X* defined by

J(x) = {x e X |<x,xy = (X[ =[x} vxeX,
the duality mapping J* from X* to X is determined by
T(x) = {xeX [ (x,x") = |I¥IP = |||} vxeX™.

The following basic results concerning the duality mapping are well known

(see [6])

® X is reflexive if and only if J is surjective;
® X is smooth if and only if J is single-valued;
® X is strictly convex if and only if J is injective.

The definitions of the strict convexity, smoothness of Banach spaces and related
properties can be found in [6,10].

If X is a reflexive Banach space, then X is strictly convex if and only if X* is
smooth and X is smooth if and only if X* is strictly convex. In a word, if a Banach
space X is reflexive strictly convex and smooth, then J, J* are one-to-one single-
valued operators and J~! = J*.
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Let X be a Banach space, C < X is a closed convex subset. The set-valued mapping
n(C|-): X - C defined by

x=n(C|) ={yeC:||x — y|| = dc(x)},

where dc(x) = inf.c¢ ||x — z||, is called the metric projection operator from X on C.
Note that for xe X, n(Clx) is the set of optimal solutions of the following
minimization problem:

(Py) inf |lx —y|’.
yeC

The following characterization of the metric projection operator can be found in
[9] (see also [16]).

Lemma 2.1. Let C be a closed convex set of a Banach space X. Then
ten(Clx) < J(x—%)nN(C,x)#0,

where N(C,x) is the normal cone to C at X C defined by
N(C, %) ={x"eX"|{x—X%x")<0 VxeC}.

We recall that (see [15]): C is said to be proximinal if z(C|x)#0 for all xe X; C is
said to be a semi-Chebyshev set if 7(C|x) is a singleton at most; C is said to be a
Chebyshev set if it is proximinal and semi-Chebyshev. It is known that [15] X is
reflexive if and only if each closed convex subset of X is proximinal, and that X is
strictly convex if and only if each closed convex subset of X is semi-Chebyshev.
When 7n(C|-) is single-valued mapping, denoted by Pc, it is called the best
approximate operator (metric projection operator).

In the following of this section, we assume that X is a reflexive strictly convex and
smooth Banach space. In this situation, n(C |-) = P¢(-) is single-valued, and Lemma
2.1 reduces to

X=Pc(x) = (J(x—x),y—x><0 forall yeC.

This inequality will be called the basic variational principle for P¢ in X.
Consider now the following problem:

(PZ) inf W(X,y),
yeC

where W (x,y) = ||x||* = 2{Jx,p> + ||y||* is called the Lyapunov function. We know
that the problem (P,) has an unique solution because W(x, y) is strictly convex in y.
The operator

Hcx = arg min W(x,y)
yeC
is said to be the generalized projection of x on C (see [1]).

Some applications of the generalized projection operator can be found in [1,2,5,8].
We recall (see [1]) that the following properties of the generalized projection operator
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on an arbitrary convex closed set C:

® The operator I1¢: X - Cc X is identity on C, i.e., for every xe C, I[Icx = x.
® The operator I1¢ is a d-accretive operator in X, i.e.,

{Ix—=Jy,dex —Hcyy =0 Vx,yelX.

® The operator I1¢ gives the absolutely best approximation of xe X relative to the
functional W(x,y), i.e.,

W(ch7y)<W(X,y) - W(vaCx) VyEC

Consequently, I1¢ is the conditionally nonexpansive operator relative to the
functional W(x,y) in Banach spaces, i.e.,

W(lcx,y)<SW(x,y) VyeC.

e Ina Hilbert space H, J is an identity operator, W (x, y) = ||x — y||*, II¢ coincides
with the metric projection operator Pc.

The following result is of great importance (see [1]):

Lemma 2.2 (Basic variational principle for the generalized projection). Assume that
Cc X is a closed convex subset. Then X = Il ¢x is the generalized projection of x on C
if and only if the inequality

(Ix—=JX,y—xX><0 VyeC
holds.

Let K be a convex cone of X. Denoted by K* and K+ the polar cone and the dual
cone of K

K'={x"eX": (x*x><0 VxeK},
KT ={x"eX": {(x",x>>0 VxeK}.

Obviously, K* and K+ are closed convex cones in X*; furthermore, K+ = —K°. If K
is a closed convex cone, then K% = K.
When C is a nonempty closed convex cone K, Lemmas 2.1 and 2.2 become

Corollary 2.1. Let K< X be a nonempty closed convex cone and xe X. Then X =
Pc(x) if and only if

{J(x—Xx),x>=0
and

(J(x—=Xx),y><0 Vyek.
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Corollary 2.2. Assume that K < X is a nonempty closed convex cone. Then, for every
xeX, X =IHgx if and only if

(Ix—=JxX,xX) =0
and
(Ix—=JX,y) <0 Vyek.
Corollary 2.3. Assume that K is a nonempty closed convex cone of X. Then
HK(X) = J*HK++JX(JO)
and
[Tk (x)[[<[lx]] VxeX.
By applying Corollary 2.1, one can obtain the decomposition of an arbitrary
element x of X in the form (see [3,13]): there exists veJ*(K?) such that
x=Pgx+v and {Jv, Pxkx) =0.
Corollary 2.2 was used in [2] to obtain another type decomposition, namely, there
exists we K such that
x=J"HJx+w and {IIgJx,w) = 0.
However, both decompositions are “‘semi-definite”” because the elements v and w are
unknown. By combining the metric projection and the generalized projection

operators, Alber [3, Theorem 2.4] obtained a completely determined decomposition
of arbitrary elements of X, namely

X =Pgx+J gJx and <{IgoJx, Pgx) =0.

In the following section, we shall give a simple proof of the above decomposition
theorem.

3. Generalized decomposition theorem

Theorem 3.1 (Alber [3, Theorem 2.4]). Assume that X is a real reflexive strictly
convex and smooth Banach space, the set K< X is a nonempty closed convex cone.
Then for every xe X and ¢ € X*, the decompositions

x=Pxgx+J gJx and <{HgoJx,Pxx)y =0,
¢ =Prop+JlgJ ¢ and < Prop,HgJ" P> =0

hold.

Proof. By Theorem 2.6 in [2], there exist we K and y € K such that
x=J"HUpJx+w and IlgJx,w) =0, (1)

¢=JlgJ"p+y and <y, IgJ*¢p)> =0. (2)
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We next prove that w and y in (1) and (2) are just Pxx and Pgo¢, respectively.
From (1), we have {IMgoJx,x) = {gJx,x— ) =||x —w||>. Hence, for
every yeKk,

Madx,x = yy = ||x = ol* = Hgadx,p) =[x — o
The last inequality comes from ye K, HgJxeK°. Thus,

[l — oo [ < [T goJ x| || x =y

=V (x = o)|L[lx = yll = []x — ol [[x = yl].

If ||x — w|| = 0, then xeK and w = Pgx. If ||x — w|| >0, then

Ix —ol|<[lx =yl Vyek,
i.e., ® = Pgx. The second part can be proved similarly. [
Remark. When X is a Hilbert space, the decomposition x = Pgx + J*IIgoJx,
reduces to

X = Pgx + PgoXx,

which is just the Moreau decomposition theorem [12]. If K is a subspace L in a
Hilbert space H and L* is its orthogonal complement, then this theorem reduces to
the Risz decomposition, i.e.,

XZPLX+PLLX.

In 2001, Wang and Wang [13] obtained a generalized orthogonal decomposition
theorem for a proximinal (Chebyshev) linear subspace in Banach spaces. In the
following, we shall extend it to closed convex cones in Banach spaces. For each
xeX, set xii = {x* e X*|{x,x*) = 0}.

Theorem 3.2. Let X be a Banach space, K =X be a proximinal closed convex cone.
Then, for every xe X,

x=x1+x3, xiek, x2eJ (K" =n(K|)'(0) and J(x2)xi #0.
If K is Chebyshev, then

x=Pgx+x2, x2eJ (KN (Pxx)")

and the decomposition is unique.

Proof. By Lemma 2.1 we easily see that J-'(K°) = n(K]|-) "' (0).
Since K is proximinal, n(K|x)#0 for all xe X. Take x;en(K|x), and let x, =
x — x1. Then x = x; + x» and

J(x2) "Nk (x1) = J(x — x1) " Ng(x1) #0

by Lemma 2.1. Since K is a closed convex cone, we see that Ng(x;) = Komxll. It
follows that x, e J~!1(K%) and J(x2) nxi #0.
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If K is Chebyshev, then, for every xe X\K, n(K|x) is singleton, denoted by
Pk (x). Hence

x=Pgx+x3, x6J YK n(Pxx)T).
Suppose that there is another decomposition for x, for instance,
X=u +uy, wuek, uzeJ_l(KOr\uli).
Then
J(x —u)) " Ng(uy) = J(uz) " N (uy) #0,
and then u; en(K|x) by Lemma 2.1. Since K is Chebyshev, we have u; = Pg(x).

Hence u, = x — Pg(x) = x;. This shows that the decomposition is unique. [

When K is a linear subspace, K” = K+ and K+ nxj = K*. Hence, in this case,
the theorem above reduces to Theorem 3.2 in [13].

The question arises: whether we can obtain a decomposition result as in Theorem
3.1 under the assumptions of Theorem 3.27

Corollary 3.1. Let X be a reflexive strictly convex Banach space, K< X be a closed
convex cone. Then, for every xe X, the (unique) decomposition

X = Pgx+x1, x2eJ YK and <{J(x3),Px(x)> =0
holds.
In fact, we can derive Theorem 3.1 from Corollary 3.1. In the following, we will

discuss another decomposition of arbitrary elements in a reflexive strictly convex and
smooth Banach space.

Lemma 3.1. Let X be a real reflexive strictly convex and smooth Banach space and let
f () be a finite convex function on X. Suppose that ze X and C .= {xe X : f(x)<t} is
the sub-level set of f(-) corresponding to t with f(z)>t>inf f(X). Then

Hez = (J +pdf)" (J2),
where i is an arbitrary positive solution to

F((J+pf) ' (Jz) = 1.

Proof. We know that Il¢z is the unique solution of the convex program
min{l(|z]]> = <Jz,p> + 1|y} subject to f(y)<t.

The Slater’s condition holds for this program. Hence, there exists a Lagrange
multiplier x>0 with

JzeJlcz + pof (Icz) and  u(f(Hcz) —t) = 0.
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Since z¢ C, we conclude p>0. Thus, f(IT¢z) = t and

Jze(J + uof ) (Il cz).
Since the resolvent (J + udf )71 of a maximal monotone operator Of is singled-
valued, we have

Hez=(J+uof) '(Jz). O
Theorem 3.3. Let C be a nonempty bounded closed convex subset of a real reflexive
strictly convex and smooth Banach space X and let

C' = {x"eX :{(x",x)<1, xeC}
be the polar set of C. Then for every y*e X*\C° and ze X with Jz¢ C°,

)i

* %

* % J
Jy :,UPC( z
U

where u = {Ilcoy*, J*y* — J* (I 0 y*) > is the unique positive solution of

= <J (J*y* ~wbe (J;yj ) e (J:>>

2= uPc <%) + T (T J2),

and

where u = (Il codz, z— J*I10Jz) is the unique positive solution of

(e () )

Proof. The polar set C° is nothing but the sublevel set of the continuous convex
finite (since C is bounded) function oy corresponding to 1 (where d¢ denotes the
indicator function of C and . is the conjugate of d¢ ). Since d(y*)>1>0 = 5(0).
We apply Lemma 3.1 for y*

Hey™ = (J* + udsg) ™ (J'y),
where p is an arbitrary positive solution to the equation

Se((J" + H05%) " (I9") = Se(lTy’) = 1.
Further, ITcoy* = (J* 4+ p0d%) " (J*y*) if and only if J*y* € (J* 4+ udd%) (M oy*), ie.,
%(nd’y) €00.(I1oy*),  equivalently,  ITcoy*€ddc (%@”)) . Since

T T (T a v\ . . .
00¢c (%) is a convex cone, the above inclusion is equivalent to

H * EC I £ H *
oy €0 (J Jlu( oy ))
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That is

I * % J(IT *
(25 (2500

which is equivalent to

<J(Jlj/ Sy JM(HCOJ’ )>7y_‘]y JM(HCOy )><0 for all yeC.

It follows from Lemma 2.1 that

Sy =T ey) _ (J*y*>
— P ,
u

Therefore,

K % J
Jy ZHPC( y
U

*

) + T (T eoy®).

Since 0 (IToy*) = 1, we have

Tt
1 =6¢(ITeoy™) +5C(Pc< ; ))

- J*(Hcoy*))

. . JEp*
=0c(Mcoy )+5c< z

J*y* _J*(Hcoy* >
T .

= <HC0y*a
Hence

p= Iy, J'y" =T (Mcy")).

On the other hand, if we replace y* with Jz, then we complete the proof. [

4. The representative of the metric projection

From Theorem 3.1, one sees that Pxx = x — J*[IxoJx. That is to say that the
metric projection Pgx can be obtained by calculating J*IT goJx. We will find, in many
cases, that the calculation of the generalized projection can be reduced to calculate
the minimum of a quadratic function with one variable. Our results generalize the
corresponding results in [7] from Hilbert spaces to reflexive, strictly convex and
smooth Banach spaces.

Theorem 4.1. Suppose that X is a real reflexive strictly convex and smooth
Banach  space, xjeX*\{0} and ceR. Let L={xeX:{xjx) =0} and



176 W. Song, Z. Cao | Journal of Approximation Theory 129 (2004) 167181

H, = {xeX:{x},x) =c}. Then

Pr(x) :x—7<x0*’ x2>
Il

g —e

2
[l

J*(xy) VxeX,

Py (x)=x J*(xp) VxeX.

Proof. According to Theorem 3.1, we need only to calculate I1;:Jx. Note that

L+ = {rxj: re R}. By Proposition 1.3 in [3], we have IT;. Jx = ng Hence

IIxgl1
* k
Pix=x-—J* <<x0*’ x2> x(*)> =Xx- 7<x0*’ x2> JH(x5).
Il [Ixgll:

We know that there exists an element yoeX such that H. = L+ {y,}, where
xy(¥0) = c¢. Hence, we have

Pr (x) = Priy,(x) = Pr(x — yo) + o
 (px -
%112
|51
—x—7<x0’x>2_cJ*(xS). O
[EA|=

= [(x =) T (x0) | 0

Remark. Theorem 4.1 was proved in [14] by using different methods.

If K={xeX: {(x3,x)»<0}, where x;e X*\{0}, then K° = {rxj:r>0} and the
representatives of the metric projection can be obtained as well.

Theorem 4.2. Suppose that X is a real reflexive strictly convex and smooth Banach
space, x;eX\{0} and ceR. Let K={xeX:{x{,x)<0} and K =
{xeX : {x},x) <c}. Then for each xe X,

Pgx=x— max{O m}J"(xfg)

J 2
]

and

Pxx=x— max{O,M}J*(X(’;).

p
[Ixgll
Proof. Since K = {rx;:r>0}, we have

W (Jx, Mo Jx) = min{||x|* = 2r (x5 + 77 [[x5] 2}
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Obviously, the minimum is attained at r = max{O,%}. Hence,
0
X5, X
IwJx = max{O, < 0*’ 2> }xé.
x5l

By Theorem 3.1, we have

{xp, %)

) 2
[l

PKxx—J*HKoJxx—max{O }J*(x(’;). O

We recall that
C, ={(x,r)eX x R:||x||<or},
where >0, is said to be an icecream cone of X x R. The polar cone of C, is
CV = {(x",9)e X" x R:{(x",s),(x,r)> = x*(x) +sr<0 V(x,r)eC,}.
Since the nonpolyhedral structure of the icecream cone, the explicit formula for

the projection on it is very important. Some other results related to the icecream cone
can be found in [11].

Theorem 4.3. Let X be a real reflexive strictly convex and smooth Banach space and
let C, be an ice cream cone in X x R. Then —C) = (J x I)(Cy ) = {(x*,5) € X* X
R ||x*||,<s/a}, and for every (x,r)eX X R,

(x,r) if |Ix|[<ar,
Pe () — 4 (00 i Ilerll< —r.
Y of|x[[+r( x .
— o7 ! otherwise.
o+ 1 [|x]|

Proof. By the definition of duality mapping J, it is easy to see that (J x I)(C),) =
{(x*,5)eX* x R|||x*||,<s/a}. We will show that —C)<(J x I)(C)/,). Take any
(x*,5)eCY. Then (a*x*,||x*||,) € C,. Hence

e, 9), (@, [1x]1.) > = a2 + s |x7| 1. <0.

If |[x*[,#0, then [|x*||,< —s/a, equivalently (—x*,—s)e(J x I)(C).
Suppose x* =0. Since (0,1)eC, and (0,5)eC?, we have s<0. Hence,
|[x*|]| =0< — s/ and hence (0,—s)e(J xI)(C/,). We next show that —(J x
I)(Cy/y)=CY. Take any (x*,s)e — (J x I)(Cy,), ie., [[x*||,< —s/a. For every
(x,r)e C,, we have
(x*,8), (x,r) ) =KX, x) +rs<ar x (—s/a) +rs = 0.

By the definition of polar cone, we have —(J x I)(C) /)< Cy.

By Theorem 3.1, it suffices to calculate ITco(Jx,r). The first case is obvious.
If Jlox|[< —r, then (Jx,r)eCy. Hence Io(Jx,r)=(Jx,r) and hence
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(J* x ) (T o (Ix, 1)) = (x,7). If ||x][>0r and [|ox|[> — 7, we need show that
[|x|| —ar( Jx
ll J =\ —\ — .
6’2( X,r) 052+1 ||x||7 o

LTI
Let us abbreviate ry := %ﬁw, Xy =— %HJTYH Then the formula above becomes

HC,S(‘]xﬂr) - (XS,V()).
It is clear that ro<0 and (x{,79) € Cg. We check the basic variational inequality for
generalized projection: Take any (x*,s) e C?
(I x D)(Ix,r) — (J* x I)(xp,70), (X", 8) — (x5,70) )
= X" = x5, x—=J'x5) + (r—ro)(s—ro)

<UL A+l = T*xol + (r = ro)(s = r0)

<(Z =)l + 150D + (= ro) s = r0)
= (Z=2) (Il +2) + (= ro)(s = ro)

=(ro—s) (O(ngz—i_ o r+ Vo) =0. O

5. A sufficient condition for the coincidence of the generalized projection and the metric
projection

It should be observed that, in general, the metric projection and the generalized
projection do not coincide. The following example provided in [4] illustrates this fact.

Example 1. Let X = R® be endowed with the norm
(vt 32, 3x3)l = (o +23)' 2 o+ (o3 4+ 29) 1

This is a strictly convex and smooth Banach space and K = {xeR’ | x; = x3 = 0} is
a closed convex cone of it. Simple computation show that Pk (1,1,1) = (1,0,0) and
nx(1,1,1) = (2,0,0).

In the following, we shall provide a condition which ensures that the generalized
projection ITgx coincides with the metric projection Pgx.

Theorem 5.1. Suppose that X is a real reflexive strictly convex and smooth Banach
space, K = X is a nonempty closed convex cone, and that xe X satisfies

{Pgx,Jx — JPgx)> = 0. (3)
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Then

PK)C:HKX.

Proof. From (3), we have
(T (Ix — (Jx — JPkx)),Jx — JPxkx)y = { Pg(x),Jx — JPgx) = 0.
It is clear that
(T (Ix = (Jx — JPgx)),x* > = {Pgx,x* > <0 for all x*eK’.
It follows from Corollary 2.1 that
ProJx = Jx — JPgXx.
Hence
Jx = JPgx + PyoJx.
On the other hand, by Theorem 3.1, we also have
Jx = JIgJ*Jx + PxoJx = JH gx + PgoJx.
Since the decomposition is unique and J is injective, we have
Pgxx = Ilgx. |
Remark. If xe X satisfies
{Ix = J(x = T Hgedx),x — J I gedxy =0
and
Jx — J(x — J M goJx)eK®,
then Pxx = Ilgx. This assertion follows from Theorems 3.1 and 2.9 in [2].
Corollary 5.1. Suppose that X is a real reflexive strictly convex and smooth Banach
space, x,yeX, y#0 and that K = {ry: re R}. If PxoJx = IIgoJx, then
{Ix,p) Iy, x) =0.

Proof. By Proposition 1.3 in [3],

J
RS x,§> _
|1yl
By Theorem 3.1, one has
J.
Jx = JHxJ*Jx + Piodx = J (% y) 4 ProJx.
y

Hence,

CIx, x> = {Pxodx, x> + <<J|)CH§>J ,x>
v
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and hence

Il = SPRY2 gy s — o, x)

2
154l
2
< [l T = 1]
The last step comes from the Corollary 2.3. Thus,

{Ix,y)

2 <Jy7 X> 207
[l
ie.,
Ixyy Iy, x> =00 0
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