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Abstract

In this paper, we first give a simple proof of the decomposition theorem in Alber (Field Inst.

Comm. 25 (2000) 77) and then present a new decomposition of arbitrary elements in reflexive

strictly convex and smooth Banach spaces. As applications of the decomposition theorem, we

give the representations of the metric projection operator for some kind of closed convex sets.

Finally, we provide a sufficient condition under which the generalized projection operator

coincides with the metric projection operator.
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1. Introduction

It is well known that Moreau’s decomposition theorem (see [12])

x ¼ PK x þ PK0x; /PK x;PK0xS ¼ 0;
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where K is a closed convex cone in a Hilbert space and K0 is the polar cone of K ; is
an important principle in Hilbert spaces. However, the transition from Hilbert space
to Banach space is not so simple. In 1998, Alber [2] obtained a semi-definite
decomposition of arbitrary elements of reflexive strictly convex and smooth Banach
spaces by using the generalized projection, i.e.,

x ¼ J�1PK0Jx þ w; /PK0Jx;wS ¼ 0;

where K is a closed convex cone, J : X-X � is the duality mapping, wAK ; and PK0

denotes the generalized projection operator. Later on, Alber [3] refined this result
and obtained a definite decomposition by using the metric and the generalized
projections, i.e.,

x ¼ PK x þ J�1PK0Jx; /PK0Jx;PK xS ¼ 0:

In this paper, we first give a simple proof of the decomposition theorem in [3] and
then present a new decomposition of arbitrary elements in a reflexive strictly convex
and smooth Banach space. As applications of the decomposition theorem, we give
the representations of the metric projection operator for some kind of closed convex
sets. Finally, we provide a sufficient condition under which the generalized
projection operator coincides with the metric projection operator.

2. Preliminaries

Let X be a real Banach space with the dual space X �: Denoting by jj � jj and jj � jj�
the norms on X and X �; respectively. As usual, we denote the duality pairing of X �

and X by /x�; xS; or /x; x�S; where x�AX � and xAX :
The duality mapping J : X-X � defined by

JðxÞ ¼ fx�AX �j/x�; xS ¼ jjx�jj2� ¼ jjxjj2g 8xAX ;

the duality mapping J� from X � to X is determined by

J�ðx�Þ ¼ fxAX j/x; x�S ¼ jjxjj2 ¼ jjx�jj2�g 8x�AX �:

The following basic results concerning the duality mapping are well known
(see [6])

* X is reflexive if and only if J is surjective;
* X is smooth if and only if J is single-valued;
* X is strictly convex if and only if J is injective.

The definitions of the strict convexity, smoothness of Banach spaces and related
properties can be found in [6,10].
If X is a reflexive Banach space, then X is strictly convex if and only if X � is

smooth and X is smooth if and only if X � is strictly convex. In a word, if a Banach
space X is reflexive strictly convex and smooth, then J; J� are one-to-one single-

valued operators and J�1 ¼ J�:
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Let X be a Banach space, CCX is a closed convex subset. The set-valued mapping
pðC j�Þ : X-C defined by

x/pðC j�Þ ¼ fyAC : jjx � yjj ¼ dCðxÞg;

where dCðxÞ ¼ infzAC jjx � zjj; is called the metric projection operator from X on C:
Note that for xAX ; pðCjxÞ is the set of optimal solutions of the following

minimization problem:

ðP1Þ inf
yAC

jjx � yjj2:

The following characterization of the metric projection operator can be found in
[9] (see also [16]).

Lemma 2.1. Let C be a closed convex set of a Banach space X : Then

%xApðCjxÞ 3 Jðx � %xÞ-NðC; %xÞa|;

where NðC; %xÞ is the normal cone to C at %xAC defined by

NðC; %xÞ :¼ fx�AX �j/x � %x; x�Sp0 8xACg:

We recall that (see [15]): C is said to be proximinal if pðCjxÞa| for all xAX ; C is
said to be a semi-Chebyshev set if pðCjxÞ is a singleton at most; C is said to be a
Chebyshev set if it is proximinal and semi-Chebyshev. It is known that [15] X is
reflexive if and only if each closed convex subset of X is proximinal, and that X is
strictly convex if and only if each closed convex subset of X is semi-Chebyshev.
When pðC j�Þ is single-valued mapping, denoted by PC ; it is called the best
approximate operator (metric projection operator).
In the following of this section, we assume that X is a reflexive strictly convex and

smooth Banach space. In this situation, pðC j�Þ ¼ PCð�Þ is single-valued, and Lemma
2.1 reduces to

%x ¼ PCðxÞ 3 /Jðx � %xÞ; y � %xSp0 for all yAC:

This inequality will be called the basic variational principle for PC in X :
Consider now the following problem:

ðP2Þ inf
yAC

Wðx; yÞ;

where Wðx; yÞ :¼ jjxjj2 � 2/Jx; ySþ jjyjj2 is called the Lyapunov function. We know
that the problem ðP2Þ has an unique solution because Wðx; yÞ is strictly convex in y:
The operator

PCx :¼ arg min
yAC

Wðx; yÞ

is said to be the generalized projection of x on C (see [1]).
Some applications of the generalized projection operator can be found in [1,2,5,8].

We recall (see [1]) that the following properties of the generalized projection operator
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on an arbitrary convex closed set C:

* The operator PC : X-CCX is identity on C; i.e., for every xAC; PCx ¼ x:
* The operator PC is a d-accretive operator in X ; i.e.,

/Jx � Jy;PCx �PCySX0 8x; yAX :

* The operator PC gives the absolutely best approximation of xAX relative to the
functional Wðx; yÞ; i.e.,

WðPCx; yÞpWðx; yÞ � Wðx;PCxÞ 8yAC:

Consequently, PC is the conditionally nonexpansive operator relative to the
functional Wðx; yÞ in Banach spaces, i.e.,

WðPCx; yÞpWðx; yÞ 8yAC:

* In a Hilbert space H; J is an identity operator, Wðx; yÞ ¼ jjx � yjj2; PC coincides
with the metric projection operator PC :

The following result is of great importance (see [1]):

Lemma 2.2 (Basic variational principle for the generalized projection). Assume that

CCX is a closed convex subset. Then x̂ ¼ PCx is the generalized projection of x on C

if and only if the inequality

/Jx � Jx̂; y � x̂Sp0 8yAC

holds.

Let K be a convex cone of X : Denoted by K0 and Kþ the polar cone and the dual
cone of K

K0 ¼ fx�AX � :/x�; xSp0 8xAKg;

Kþ ¼ fx�AX � :/x�;xSX0 8xAKg:

Obviously, K0 and Kþ are closed convex cones in X �; furthermore, Kþ ¼ �K0: If K

is a closed convex cone, then K00 ¼ K :
When C is a nonempty closed convex cone K ; Lemmas 2.1 and 2.2 become

Corollary 2.1. Let KCX be a nonempty closed convex cone and xAX : Then %x ¼
PCðxÞ if and only if

/Jðx � %xÞ; %xS ¼ 0

and

/Jðx � %xÞ; ySp0 8yAK :
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Corollary 2.2. Assume that KCX is a nonempty closed convex cone. Then, for every

xAX ; x̂ ¼ PK x if and only if

/Jx � Jx̂; x̂S ¼ 0
and

/Jx � Jx̂; ySp0 8yAK :

Corollary 2.3. Assume that K is a nonempty closed convex cone of X : Then

PKðxÞ ¼ J�PKþþJxðJ0Þ
and

jjPKðxÞjjpjjxjj 8xAX :

By applying Corollary 2.1, one can obtain the decomposition of an arbitrary

element x of X in the form (see [3,13]): there exists vAJ�ðK0Þ such that

x ¼ PK x þ v and /Jv;PK xS ¼ 0:

Corollary 2.2 was used in [2] to obtain another type decomposition, namely, there
exists wAK such that

x ¼ J�PK0Jx þ w and /PK0Jx;wS ¼ 0:

However, both decompositions are ‘‘semi-definite’’ because the elements v and w are
unknown. By combining the metric projection and the generalized projection
operators, Alber [3, Theorem 2.4] obtained a completely determined decomposition
of arbitrary elements of X ; namely

x ¼ PK x þ J�PK0Jx and /PK0Jx;PK xS ¼ 0:

In the following section, we shall give a simple proof of the above decomposition
theorem.

3. Generalized decomposition theorem

Theorem 3.1 (Alber [3, Theorem 2.4]). Assume that X is a real reflexive strictly

convex and smooth Banach space, the set KCX is a nonempty closed convex cone.
Then for every xAX and fAX �; the decompositions

x ¼ PK x þ J�PK0Jx and /PK0Jx;PK xS ¼ 0;

f ¼ PK0fþ JPK J�f and /PK0f;PK J�fS ¼ 0

hold.

Proof. By Theorem 2.6 in [2], there exist oAK and cAK0 such that

x ¼ J�PK0Jx þ o and /PK0Jx;oS ¼ 0; ð1Þ

f ¼ JPK J�fþ c and /c;PK J�fS ¼ 0: ð2Þ
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We next prove that o and c in (1) and (2) are just PK x and PK0f; respectively.
From (1), we have /PK0Jx; xS ¼ /PK0Jx; x � oS ¼ jjx � ojj2: Hence, for
every yAK ;

/PK0Jx; x � yS ¼ jjx � ojj2 �/PK0Jx; ySXjjx � ojj2:

The last inequality comes from yAK ; PK0JxAK0: Thus,

jjx � ojj2p jjPK0Jxjj�jjx � yjj

¼ jjJðx � oÞjj�jjx � yjj ¼ jjx � ojj jjx � yjj:

If jjx � ojj ¼ 0; then xAK and o ¼ PK x: If jjx � ojj40; then

jjx � ojjpjjx � yjj 8yAK ;

i.e., o ¼ PK x: The second part can be proved similarly. &

Remark. When X is a Hilbert space, the decomposition x ¼ PK x þ J�PK0Jx;
reduces to

x ¼ PK x þ PK0x;

which is just the Moreau decomposition theorem [12]. If K is a subspace L in a

Hilbert space H and L> is its orthogonal complement, then this theorem reduces to
the Risz decomposition, i.e.,

x ¼ PLx þ PL>x:

In 2001, Wang and Wang [13] obtained a generalized orthogonal decomposition
theorem for a proximinal (Chebyshev) linear subspace in Banach spaces. In the
following, we shall extend it to closed convex cones in Banach spaces. For each

xAX ; set x>
1 ¼ fx�AX �j/x; x�S ¼ 0g:

Theorem 3.2. Let X be a Banach space, KCX be a proximinal closed convex cone.
Then, for every xAX ;

x ¼ x1 þ x2; x1AK ; x2AJ�1ðK0Þ ¼ pðK j�Þ�1ð0Þ and Jðx2Þ-x>
1 a|:

If K is Chebyshev, then

x ¼ PK x þ x2; x2AJ�1ðK0-ðPK xÞ>Þ

and the decomposition is unique.

Proof. By Lemma 2.1 we easily see that J�1ðK0Þ ¼ pðK j�Þ�1ð0Þ:
Since K is proximinal, pðK jxÞa| for all xAX : Take x1ApðK jxÞ; and let x2 ¼

x � x1: Then x ¼ x1 þ x2 and

Jðx2Þ-NKðx1Þ ¼ Jðx � x1Þ-NKðx1Þa|

by Lemma 2.1. Since K is a closed convex cone, we see that NKðx1Þ ¼ K0-x>
1 : It

follows that x2AJ�1ðK0Þ and Jðx2Þ-x>
1 a|:
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If K is Chebyshev, then, for every xAX \K ; pðKjxÞ is singleton, denoted by
PKðxÞ: Hence

x ¼ PK x þ x2; x2AJ�1ðK0-ðPK xÞ>Þ:

Suppose that there is another decomposition for x; for instance,

x ¼ u1 þ u2; u1AK ; u2AJ�1ðK0-u>
1 Þ:

Then

Jðx � u1Þ-NKðu1Þ ¼ Jðu2Þ-NKðu1Þa|;

and then u1ApðKjxÞ by Lemma 2.1. Since K is Chebyshev, we have u1 ¼ PKðxÞ:
Hence u2 ¼ x � PKðxÞ ¼ x2: This shows that the decomposition is unique. &

When K is a linear subspace, K0 ¼ K> and K>-x>
1 ¼ K>: Hence, in this case,

the theorem above reduces to Theorem 3.2 in [13].
The question arises: whether we can obtain a decomposition result as in Theorem

3.1 under the assumptions of Theorem 3.2?

Corollary 3.1. Let X be a reflexive strictly convex Banach space, KCX be a closed

convex cone. Then, for every xAX ; the (unique) decomposition

x ¼ PK x þ x2; x2AJ�1ðK0Þ and /Jðx2Þ;PKðxÞS ¼ 0

holds.

In fact, we can derive Theorem 3.1 from Corollary 3.1. In the following, we will
discuss another decomposition of arbitrary elements in a reflexive strictly convex and
smooth Banach space.

Lemma 3.1. Let X be a real reflexive strictly convex and smooth Banach space and let

f ð�Þ be a finite convex function on X : Suppose that zAX and C :¼ fxAX : f ðxÞptg is

the sub-level set of f ð�Þ corresponding to t with f ðzÞ4t4inf f ðXÞ: Then

PCz ¼ ðJ þ mqf Þ�1ðJzÞ;

where m is an arbitrary positive solution to

f ððJ þ mqf Þ�1ðJzÞÞ ¼ t:

Proof. We know that PCz is the unique solution of the convex program

minf1
2
jjzjj2 �/Jz; ySþ 1

2
jjyjj2g subject to f ðyÞpt:

The Slater’s condition holds for this program. Hence, there exists a Lagrange
multiplier mX0 with

JzAJPCz þ mqf ðPCzÞ and mð f ðPCzÞ � tÞ ¼ 0:
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Since zeC; we conclude m40: Thus, f ðPCzÞ ¼ t and

JzAðJ þ mqf ÞðPCzÞ:

Since the resolvent ðJ þ mqf Þ�1 of a maximal monotone operator qf is singled-
valued, we have

PCz ¼ ðJ þ mqf Þ�1ðJzÞ: &

Theorem 3.3. Let C be a nonempty bounded closed convex subset of a real reflexive

strictly convex and smooth Banach space X and let

C0 :¼ fx�AX � :/x�; xSp1; xACg

be the polar set of C: Then for every y�AX �
\C0 and zAX with JzeC0;

J�y� ¼ mPC

J�y�

m

� �
þ J�ðPC0y�Þ;

where m ¼ /PC0y�; J�y� � J�ðPC0y�ÞS is the unique positive solution of

m ¼ J J�y� � mPC

J�y�

m

� �� �
; mPC

J�y�

m

� �� �

and

z ¼ mPC
z

m

� �
þ J�ðPC0JzÞ;

where m ¼ /PC0Jz; z � J�PC0JzS is the unique positive solution of

m ¼ J z � mPC

z

m

� �� �
; mPC

z

m

� �� �
:

Proof. The polar set C0 is nothing but the sublevel set of the continuous convex
finite (since C is bounded) function d�C corresponding to 1 (where dC denotes the

indicator function of C and d�C is the conjugate of dC ). Since d�Cðy�Þ4140 ¼ d�Cð0Þ:
We apply Lemma 3.1 for y�

PC0y� ¼ ðJ� þ mqd�CÞ
�1ðJ�y�Þ;

where m is an arbitrary positive solution to the equation

d�CððJ� þ mqd�CÞ
�1ðJ�y�ÞÞ ¼ d�CðPC0y�Þ ¼ 1:

Further, PC0y� ¼ ðJ� þ mqd�CÞ
�1ðJ�y�Þ if and only if J�y�AðJ� þ mqd�CÞðPC0y�Þ; i.e.,

J�y��J�ðP
C0y�Þ

m Aqd�CðPc0y
�Þ; equivalently, PC0y�AqdC

J�y��J�ðP
C0y�Þ

m

� �
: Since

qdC
J�y��J�ðP

C0y�Þ
m

� �
is a convex cone, the above inclusion is equivalent to

PC0y�

m
AqdC

J�y� � J�ðPC0y�Þ
m

� �
:
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That is

JJ� PC0y�

m

� �
AqdC

J�y� � J�ðPC0y�Þ
m

� �
;

which is equivalent to

J
J�y�

m
� J�y� � J�ðPC0y�Þ

m

� �
; y � J�y� � J�ðPC0y�Þ

m

� �
p0 for all yAC:

It follows from Lemma 2.1 that

J�y� � J�ðPC0y�Þ
m

¼ PC

J�y�

m

� �
:

Therefore,

J�y� ¼ mPC

J�y�

m

� �
þ J�ðPC0y�Þ:

Since d�CðPC0y�Þ ¼ 1; we have

1 ¼ d�CðPC0y�Þ þ dC PC

J�y�

m

� �� �

¼ d�CðPC0y�Þ þ dC
J�y� � J�ðPC0y�Þ

m

� �

¼ PC0y�;
J�y� � J�ðPC0y�Þ

m

� �
:

Hence

m ¼ PC0y�; J�y� � J�ðPC0y�Þh i:

On the other hand, if we replace y� with Jz; then we complete the proof. &

4. The representative of the metric projection

From Theorem 3.1, one sees that PK x ¼ x � J�PK0Jx: That is to say that the
metric projection PK x can be obtained by calculating J�PK0Jx:We will find, in many
cases, that the calculation of the generalized projection can be reduced to calculate
the minimum of a quadratic function with one variable. Our results generalize the
corresponding results in [7] from Hilbert spaces to reflexive, strictly convex and
smooth Banach spaces.

Theorem 4.1. Suppose that X is a real reflexive strictly convex and smooth

Banach space, x�
0AX �

\f0g and cAR: Let L ¼ fxAX :/x�
0; xS ¼ 0g and
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Hc ¼ fxAX :/x�
0; xS ¼ cg: Then

PLðxÞ ¼ x �/x�
0; xS

jjx�
0jj

2
�

J�ðx�
0Þ 8xAX ;

PHc
ðxÞ ¼ x �/x�

0; xS� c

jjx�
0jj

2
�

J�ðx�
0Þ 8xAX :

Proof. According to Theorem 3.1, we need only to calculate PL>Jx: Note that

L> ¼ frx�
0 : rARg: By Proposition 1.3 in [3], we have PL>Jx ¼ /x�

0
;xS

jjx�
0
jj2�

x�
0: Hence

PLx ¼ x � J� /x�
0; xS

jjx�
0jj

2
�

x�
0

 !
¼ x �/x�

0; xS

jjx�
0jj

2
�

J�ðx�
0Þ:

We know that there exists an element y0AX such that Hc ¼ L þ fy0g; where
x�
0ðy0Þ ¼ c: Hence, we have

PHc
ðxÞ ¼PLþy0ðxÞ ¼ PLðx � y0Þ þ y0

¼ ðx � y0Þ �
/x�

0; x � y0S

jjx�
0jj

2
�

J�ðx�
0Þ

" #
þ y0

¼ x �/x�
0; xS� c

jjx�
0jj

2
�

J�ðx�
0Þ: &

Remark. Theorem 4.1 was proved in [14] by using different methods.

If K ¼ fxAX : /x�
0; xSp0g; where x�

0AX �
\f0g; then K0 ¼ frx�

0 : rX0g and the

representatives of the metric projection can be obtained as well.

Theorem 4.2. Suppose that X is a real reflexive strictly convex and smooth Banach

space, x�
0AX �

\f0g and cAR: Let K ¼ fxAX :/x�
0; xSp0g and Kc ¼

fxAX :/x�
0; xSpcg: Then for each xAX ;

PK x ¼ x �max 0;
/x�

0; xS

jjx�
0jj

2
�

( )
J�ðx�

0Þ

and

PKc
x ¼ x �max 0;

/x�
0; xS� c

jjx�
0jj

2
�

( )
J�ðx�

0Þ:

Proof. Since K0 ¼ frx�
0 : rX0g; we have

WðJx;Pk0JxÞ ¼ min
rX0

fjjxjj2 � 2r/x; x�
0Sþ r2 jjx�

0jj
2
�g:
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Obviously, the minimum is attained at r ¼ maxf0; /x�
0
;xS

jjx�
0
jj2�
g: Hence,

Pk0Jx ¼ max 0;
/x�

0; xS

jjx�
0jj

2
�

( )
x�
0:

By Theorem 3.1, we have

PK x ¼ x � J�PK0Jx ¼ x �max 0;
/x�

0; xS

jjx�
0jj

2
�

( )
J�ðx�

0Þ: &

We recall that

Ca :¼ fðx; rÞAX � R : jjxjjparg;
where a40; is said to be an icecream cone of X � R: The polar cone of Ca is

C0
a :¼ fðx�; sÞAX � � R :/ðx�; sÞ; ðx; rÞS ¼ x�ðxÞ þ srp0 8ðx; rÞACag:

Since the nonpolyhedral structure of the icecream cone, the explicit formula for
the projection on it is very important. Some other results related to the icecream cone
can be found in [11].

Theorem 4.3. Let X be a real reflexive strictly convex and smooth Banach space and

let Ca be an ice cream cone in X � R: Then �C0
a ¼ ðJ � IÞðC1=aÞ ¼ fðx�; sÞAX � �

R j jjx�jj�ps=ag; and for every ðx; rÞAX � R;

PCaðx; rÞ ¼

ðx; rÞ if jjxjjpar;

ð0; 0Þ if jjaxjjp� r;

ajjxjj þ r

a2 þ 1
a

x

jjxjj; 1
� �

otherwise:

8>>><
>>>:

Proof. By the definition of duality mapping J; it is easy to see that ðJ � IÞðC1=aÞ ¼
fðx�; sÞAX � � R j jjx�jj�ps=ag: We will show that �C0

aCðJ � IÞðC1=aÞ: Take any

ðx�; sÞAC0
a : Then ðaJ�x�; jjx�jj�ÞACa: Hence

/ðx�; sÞ; ðaJ�x�; jjx�jj�ÞS ¼ ajjx�jj2� þ sjjx�jj�p0:

If jjx�jj�a0; then jjx�jj�p� s=a; equivalently ð�x�;�sÞAðJ � IÞðC1=aÞ:
Suppose x� ¼ 0: Since ð0; 1ÞACa and ð0; sÞAC0

a ; we have sp0: Hence,

jjx�jj ¼ 0p� s=a and hence ð0;�sÞAðJ � IÞðC1=aÞ: We next show that �ðJ �
IÞðC1=aÞCC0

a : Take any ðx�; sÞA� ðJ � IÞðC1=aÞ; i.e., jjx�jj�p� s=a: For every

ðx; rÞACa; we have

/ðx�; sÞ; ðx; rÞS ¼ /x�; xSþ rspar � ð�s=aÞ þ rs ¼ 0:

By the definition of polar cone, we have �ðJ � IÞðC1=aÞCC0
a :

By Theorem 3.1, it suffices to calculate PC0
a
ðJx; rÞ: The first case is obvious.

If jjaxjjp� r; then ðJx; rÞAC0
a : Hence PC0

a
ðJx; rÞ ¼ ðJx; rÞ and hence

ARTICLE IN PRESS
W. Song, Z. Cao / Journal of Approximation Theory 129 (2004) 167–181 177



ðJ� � IÞðPC0
a
ðJx; rÞÞ ¼ ðx; rÞ: If jjxjj4ar and jjaxjj4� r; we need show that

Pc0a
ðJx; rÞ ¼ jjxjj � ar

a2 þ 1

Jx

jjxjj;�a
� �

:

Let us abbreviate r0 :¼ a2r�ajjxjj
1þa2 ; x�

0 ¼ � r0
a

Jx
jjxjj: Then the formula above becomes

PC0
a
ðJx; rÞ ¼ ðx�

0; r0Þ:

It is clear that r0o0 and ðx�
0; r0ÞAC0

a : We check the basic variational inequality for

generalized projection: Take any ðx�; sÞAC0
a

/ðJ� � IÞðJx; rÞ � ðJ� � IÞðx�
0; r0Þ; ðx�; sÞ � ðx�

0; r0ÞS

¼ /x� � x�
0; x � J�x�

0Sþ ðr � r0Þðs � r0Þ

pðjjx�jj� þ jjx�
0jj�Þjjx � J�x�

0jj þ ðr � r0Þðs � r0Þ

p
r0

a
� s

a

� �
ðjjxjj þ jjJ�x�

0jjÞ þ ðr � r0Þðs � r0Þ

¼ r0

a
� s

a

� �
jjxjj þ r0

a

� �
þ ðr � r0Þðs � r0Þ

¼ ðr0 � sÞ ajjxjj þ r0

a2
� r þ r0

� �
¼ 0: &

5. A sufficient condition for the coincidence of the generalized projection and the metric

projection

It should be observed that, in general, the metric projection and the generalized
projection do not coincide. The following example provided in [4] illustrates this fact.

Example 1. Let X ¼ R3 be endowed with the norm

jjðx1; x2; x3Þjj ¼ ðx2
1 þ x2

2Þ
1=2 þ ðx2

2 þ x2
3Þ

1=2:

This is a strictly convex and smooth Banach space and K ¼ fxAR3 j x2 ¼ x3 ¼ 0g is
a closed convex cone of it. Simple computation show that PKð1; 1; 1Þ ¼ ð1; 0; 0Þ and
pKð1; 1; 1Þ ¼ ð2; 0; 0Þ:

In the following, we shall provide a condition which ensures that the generalized
projection PK x coincides with the metric projection PK x:

Theorem 5.1. Suppose that X is a real reflexive strictly convex and smooth Banach

space, KCX is a nonempty closed convex cone, and that xAX satisfies

/PK x; Jx � JPK xS ¼ 0: ð3Þ
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Then

PK x ¼ PK x:

Proof. From (3), we have

/J�ðJx � ðJx � JPK xÞÞ; Jx � JPK xS ¼ /PKðxÞ; Jx � JPK xS ¼ 0:

It is clear that

/J�ðJx � ðJx � JPK xÞÞ; x�S ¼ /PK x; x�Sp0 for all x�AK0:

It follows from Corollary 2.1 that

PK0Jx ¼ Jx � JPK x:

Hence

Jx ¼ JPK x þ PK0Jx:

On the other hand, by Theorem 3.1, we also have

Jx ¼ JPK J�Jx þ PK0Jx ¼ JPK x þ PK0Jx:

Since the decomposition is unique and J is injective, we have

PK x ¼ PK x: &

Remark. If xAX satisfies

/Jx � Jðx � J�PK0JxÞ; x � J�PK0JxS ¼ 0

and

Jx � Jðx � J�PK0JxÞAK0;

then PK x ¼ PK x: This assertion follows from Theorems 3.1 and 2.9 in [2].

Corollary 5.1. Suppose that X is a real reflexive strictly convex and smooth Banach

space, x; yAX ; ya0 and that K ¼ fry : rARg: If PK0Jx ¼ PK0Jx; then

/Jx; yS/Jy; xSX0:

Proof. By Proposition 1.3 in [3],

PK x ¼ /Jx; yS

jjyjj2
y:

By Theorem 3.1, one has

Jx ¼ JPK J�Jx þ PK0Jx ¼ J
/Jx; yS

jjyjj2
y

 !
þ PK0Jx:

Hence,

/Jx; xS ¼ /PK0Jx; xSþ /Jx; yS

jjyjj2
Jy; x

* +
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and hence

jjxjj2 �/Jx; yS

jjyjj2
/Jy; xS ¼/PK0Jx; xS

p jjJxjj�jjxjj ¼ jjxjj2:

The last step comes from the Corollary 2.3. Thus,

/Jx; yS

jjyjj2
/Jy; xSX0;

i.e.,

/Jx; yS/Jy; xSX0: &
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